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/, ABSTRACT '

Ultrasonic measurements of wave-propagation characteristics in composite and heterogeneous
materials provide an excellent means to study their mechanical properties. In recent years we have
studied, both theoretically and experimentally, characteristics of elastic-wave propagation in particle-
reinforced composites and heterogeneous materials as well as in homogeneous and laminated fiber-
rcinforced composites. Comparison of theoretical predictions with obervations of wave velocities
has shown good agreement and has provided a way to evaluate microstructural dependence of
mechanical properties of these materials. Modeling predictions coupled with observations can also
be used to obtain mechanical properties of the reinforcing phase. which are sometimes not easily
obtained. In this paper we present results of some of these recent studies.

We also present results of our study of changes in phase velocities and attenuation caused
by interface layers between the reinforcing phase and the matrix. We show that this third phase
measurably modifies the dispersion behavior. This should lead to effective characterization of
interface layer properties by ultrasonic methods.

INTRODUCTION

Determination of effective elastic moduli and damping properties of a heterogeneous or
composite material by using elastic waves (propagating and standing) is very effective. Several
theoretical studies'-' show that for long wavelengths one can calculate the effective wave speeds of
plane-longitudinal and plane-shear waves through such a material. At long wavelengths, wave
speeds thus calculated are nondispersive; they provide values for the static effective elastic
properties. References to other studies can be found in those cited.

We present results of some of our recent studies of phase velocity and attenuation of
plane longitudinal and shear waves propagating in a medium with microstructurc. Microstructures
studied were either inclusions or fibers. In the first case, we examined the effect of inclusion
shape, volume fraction, and elastic properties on wave speeds. We studied inclusions with their
interface layers separating them from the matrix medium. For fiber-reinforced materials, we
studied continuous aligned fibers. In this case, the medium behaves anisotropically because of the
alignment of the fibers.

The theoretical model for these microstructural studies used a wave-scattering approach and
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predicted the macroscopic isotropic elastic properties for the case of random orientation of
inclusions and for spherical inclusions. For aligned fiber-reinforced materials the model gives the
anisotropic elastic properties. The scattering approach led also to an estimation of attenuation and

N-. dispersion of wvacs via the optca! theoren.

The scattering approach applies to a macroscopically homogeneous medium, infinite in
extent. For a bounded medium such as laminated-plate structures we, developed a hybrid

numerical technique to analyze dispersion of guided waves. In this paper we present some of our
compittaitonal results showing the effect on dispersement characteristics causcd by interface soft
le,"5 bct%%vcen stibf laycr., in a plate.

The expcriicntal methods 0 .
*
,  consisted of a pulse-echo technique and a resonance

mcthod Thcsc wcre chosen to provide the advantages of small specimens and low inaccuracy
For details of the experimental techniques, the reader is referred to the references cited

THEORY

Scattering by a Single Inclusion

Consider a single elastic ellipsoidal inclusion with material properties X'. u', p' embedded
in an elastic matrix with properties X. u, p. Assume that the inclusion is separated from the
matrix by a thin layer of elastic material with properties X,. /,, p,. which are variable through the
thickness. Here X. g are the Lam, constants and p is the density. The geometry of he problem
is shown in Figure 1.

We need to find the field scattered by this inclusion when it is excited by an incident

elastic wave. A low-frequency approximate solution to this problem was presented earlier'" for
the case of no intermediate layer between the inclusion and the matrix. It can be shown that if
the exciting field is given by. dropping the time factor e i wt.

E ) = [ (1) (r , 8 ) + b N (1) r , . ) + rc n i M (1 )

~: mn ~ i mn~ mn

n=O m=-n n

then the scattered field is

2 V
u )(r,,) + EB N (r.8,) + 0W) (2)

4,Here L (1) N (I) and M(1) are spherical vector wave functions" that are finite at r = 0 and
imn - hil - mn

SL N mn arc those that satisfy the radiation condition as r - *. The constants A and

B., are given by"
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A -- T a + S(v)b].

BAI = 4,(v)cT [T + b(v)b A3

hclre, O is the VolmC Of the cllipsoid and

= kC. k, = w/C,. r = C,/C,

A3r', v=O,2
5(v) =

2r. v=1

- " r2. &?l

:,. A(v) -

. ,=0,2

C, and C2 are the longitudinal and shear wave speeds in the matrix medium. Expressions for

T . can be found elsewhere"
'AV

Effective Properties of a Composite Medium with Inclusions

Once the scattered field caused by a single inclusion is known, multiple scattering from a
number of inclusions can be easily calculated. In particular, for a random homogeneous
distribution of ellipsosidal inclusions

C (2) r- 3

C, (1 +9cP)(13 !,1+ cP,(2+3r) /(-15cP (+3cP 0)+ c P,(2+3r'). 
(4)

C (I+9P, 1 I1 (5)

C2*3 1+ 3c, (4-9y')
4
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llcre c = n0 being the number density of inclusions. The constants P, and 13, depend

3ivabcn0 "

on the geometrical properties of the inclusions as well as on the mechanical properties (,.M.X .')

of the matrix and the inclusions. P, is simply given by

I), . Pi/P-I
9

In deriving (4) and (5) it has been assumed that the inclusions are similar in shape, size and
ph ,ical properties.

When there is an intermediate layer between the inclusion and the matrix, then the
coelficicnts AAV and BUV  cannot be obtained in exact form; they have to be determined

nuimerically for general elliposoidal inclusions. For spherical inclusions, on the other hand. exact
expressions for Ag, and B... valid at arbitrary frequencies, can be obtained if the intermediate
layer has constant properties. Also, for spherical inclusions with thin interface layers having
variable properties. A and B can be obtained approximately if h/X<<I. h/a<<l. Ilere h is
the thickness of the interface layer, a the radius of the spherical inclusions, and X the wavelength
of the incident wave. Even then, the problem of determining phase velocities of longitudinal and
shear waves in the composite material at finite frequencies is complicated The problem is
simpler if the volume concentration of inclusions is small. This is discussed in the following

Consider a spherical inclusion of radius a with an interface layer (Figure 2). Let the
incident field be given by

U i =ikz eikz (6)

where k = /C The scattered field is then given by

U(S)= uP + uS (7)

where superscripts p and s refer to longitudinal-wave and shear-wave components. respectively.
Now it will be assumed that within the interface layer the elastic coefficients X, and uz vary with
the distance from the center of the inclusions as

X,(r) + 2A,(r) = (X,' + 2p,') f(r). a<r<a+h. (8)

,u(r) = tt,' g(r). a<r<a+h,

where f(r) and g(r) are general integrable functions of r. If it is further assumed that hfa<<I.
h/X<<l, then it can be shown that the displacement components satisfy the approximate boundary
conditions on r = a.

(S) (i) (t) hK, t)
r r r V', + 2j', r r

() (i) (t)  hK (t) (9)
-= s.(
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(s (1 Mr hlK, Ct)

* whcre

*K d x ih K, dx
f~ahx - J g(a+hx)

Su~perscript (t) refers to the field quantities within the inclusion. ri- is the stress tensor.
To this order of approximation the traction components rr. rr and rOare continuous at r =
a These simplified bouindary conditions allow the single scattering problem to be solved

When r - .one obtaiins from Eq. (7) the far-field behavior of u swhen the incident

wave is given by a plane-longitudinal wave (the first term on the right-hand side of Eq. (6)).
Then it can be shown that

utP - gP (0) e ikr e r- ' s - hP (0) -ik 9  (10)
r - -r

For the incident plane-shear wave (the second term onl the iight hand side of Eq. (6)) one finds

L i p g p ( 8 .0 ) e i k , r G 1

ikr ik r

1s hs.(0. 0) - e9 ~ h2
5 (8. ) e ek~

The expressions for the amplitude functions gP. hP. and so on, can be obtained from
our earlier study'". Using Eqs. (10) and (11) and the forward -scat tering theorem" we then obtain
the equations for the effective wave numbers in the composite medium:

for the longitudinal wave and

k I n. h, 1(0,O0) (13)

for the shear wave. Since gP(O) and h,'(0.0) are complex. effective waves will be both dispersive
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and attenuative.

Effective Properties of a Fiber-Reinforced Composite

The analysis presented abo~e for inclusions can be applied also to a medium reinforced by
aligned COntinuouS fibers. In that case, one can dcrive CquatlionS similar to (4) and (5) for
longitudinal and shear waves propagating perpendicular to the fibers. Taking the x, axiS.oalong
the fibers, and assuming them to be transversely isotropic about this axis, it was shown that
for SI1 waves polarized along the fibers the effective wave number. 0'. is

0' p ( l-c'n- ) ,'(ni I))- (14)
k2  p (lc(m-I)/(m l))

where p* is the effective dcnsity and m = C,.j. For longitudinal and shear waves polarized in
a plane perpendicular to the fibers we get

k," p* (I+cl' 0)[I cP(I r') ]
k -- cP'(l-r2 )-2c)l' (15)

k 

(16)k 2 2c(Co,-A) (X+2u)
I+

Note that C. C,,. C44. C... and C,, are the five independent elastic constants characterizing the
fibers and p = p[l+c(p'/p-1)]. P, and P, are defined by the relationships

K 'T - (X+ 1) 1(C - u)
= - 'T2 = - C(X+3)+(+)(17)

where K'-r is the plane-strain bulk modulus of the fibers. The remaining two elastic moduli of
the composite are obtained from relationships derived by Hill

l)ispcrsion of Guided Waves in a Laminated Plate with Interface Layers

In composite materials, interfaces between the different constitutents play an important role
in determining their mechanical behavior. As discussed above, the effect of interfacial laycrs
between inclusions and matrix medium on composite properties can be evaluated approximately
using a scattering approach. For laminated-composite plate structures, the effect on the dispersion
characteristics caused by interfacial layers between the laminae can be analyzed in detail. The
changes in dispersion characteristics should provide a way to ultrasonically evaluate the interface
properties

In this section we briefly outline a theoretical technique to study guided-wave propagation
in a liminated plate with interface layers. For simplicity of analysis, we consider only isotropic
lianic and isotropic interface layers Equations governing guided-wave propagation in such a
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plate can be solved exactly. I lowever. if the lamina are isotropic, then an exact analysis is
extremely complicated. To avoid the difficulties associated with an exact analysis, we developed a
stiffness method in which each lamina (and interface layer) is divided into several sublavers
Polynomial interpolation functions for through-th.ckness variation of displacements in each layer
are assumed. The interpolation functions involve a discrete number of generalized coordinates that

* arc functions of the in-plane coordinates x and y (Figure 3) and time t The generalized
coordinates are the displacements and tractions at the interfaces between the adjoining sublayers,
thus ensuring continuity of these quantities at the interfaces. By applying lamilton's principle the
dispersion cquation is obtaincd as a standard algebraic eigenvalIc problem whose solutions %cld
the dispersion relations and the %ariation of stresses and displacements through the plate thickness

-. of the plate. This technique was used earlier-" to study wave propagation in an infinite
periodically laminated mcdim. The application of the technique to a sandwich plate was discussed
in detail elsewhere:., lere, for brevity, we present only the reszllts for a particular sandwich
plate.

RESULTS AND DISCUSSION

Cast-Iron Elastic Constants

Graphite-particle shape affects cast-iron's properties, both physical and mechanical. Several
studies"' - " dealt with the various properties of cast-iron as they depend on graphite particle
shape. But all these studies, experimental and theoretical, dealt only with limiting shapes: sphere.

rod, and disc. They failed to deal with arbitrary aspect ratio, c/a. of the particles. Using Eqs.
(4) and (5), we calculated Young's modulus. E, of cast-iron for various valuer of c/a. The
results are shown in Figure 4 along with the experimental observations reported by various
investigators 21-Z6 In this figure, calculated results are for two different volume fractions--10 and

12 percent--a range that contains most of the studied cast-irons.

The two upper, nearly horizontal, curves correspond to graphite's upper third-order

elastic-constant bounds. The two lower curves correspond to the lower bounds. From

monocrystal elastic constants, using equations by Kroner and Koch"8 , for graphite, Wawra, et al"
calculated third-order elastic-constant bounds. They found the following effective quasi-isotropic
elastic constants: E'= 4.17(1.34) GPa; A'= 1.41(0.45) GPa. Values outside parentheses denote
upper bounds; those inside denote lower. For the matrix phase we took the constants for alpha

, iron: E - 206 Gl~a, u = 80.0 GPa.

Corresponding to observation, our model predicts a strong dependence of Young's
modulus on aspect ratio. Near the spherical limit (c/a = 1). E . varies slowly with c/a. Near

the oblate-disc limit (c/a - 0), E* varies rapidly with c/a. An interesting result is that graphite's
lower-bound quasi-isotropic elastic constants fit observation so well.

Elastic Constants of Graphite-Aluminum Composite

- Figure 5 shows the microstructure of graphite-fiber-reinforced aluminum obtained from a
commerical source. Bv Archimedes' method, we found the mass density of the composite to be
2.013 g/cm'. For a fiber volume fraction of 0.70, using 2.6523 for aluminum, the graphite fiber
density is predicted to be 1.738, very close to the manufacturer's estimate of 1.76.

We determined the nine Ci, by measuring eighteen sound speeds on four specimen
geometries described previously'". For brevity, we omit further description, except for a few
salient details: bond--phenylsalicylate; transducers--quartz, x-cut and ac-cut; frequencies--5 to 6
MHz; specimen size--16-mm cube, or smaller depending on specimen geometry.

W1
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Table 1 shows the tidy's principal results. Column I lists various elastic constants.
Column 2 gives a set of fiber elastic constants" . .  We chose these because E, agrees closely
with the F, for the present fiber. Column 3 shows measured resLlts. From the measured

results and the predictions from Eqs. (14)-(16) together with Ilill's relationships, we predicted the
fiber properties shown in column 4 We used the calculational sequence. C,,, C66, C,,.-C,, V11

and E,,. Column 5 shows the calculated Cij. Finally, coluin 6 shows the ratio of column 5 to
colunin 3

RCsults of column 3 of Table I show that the studied composite shows orthotropic elastic
* symmetry .which t approximatel. transversely isotropic with the x,-axis as the symmetry axis.
The microstructure in Fiure 5 also suggests transvcrse- isotropic symmetry.

Concerning the first-guess graphite-fiber elastic-constant calculations, we find reasonable
agreement for C,, C2 ' C,. and C, Thus, the criterion of choosing a graphite elastic-constant
set based on E,. the axial Young's modulus, succeeds partially.

One can obtain a better, complete graphite elastic-constant set by using the model
equations inversely This is shown in column 4 and it is seen that the constants appearing in
this column differ significantly from the first-guess values in column 2.

For the graphite-aluminum composite, Figure 6 shows the variation with temperature of
the principal elastic stiffnesses Cij (i = 1,6). For comparison, the figure also shows the
temperature variation of the longitudinal and shear moduli of the aluminum matrix. The
graphite-aluminum Ci-versus-temperature results in Figure 6 show strong anisotropy. The largestchange occurs i C,,. the longitudinal elastic stiffness perpendicular to the fibers. The smallest
change occurs in C,, the longitudinal elastic stiffness paralle l to the fibers. These changes alree

with the well-known high axial elastic stiffness and low axial thermal expansivity of graphite
O fibers. The three shear moduli--C,,. C,,,--fall between these extremes. Among the shear

moduli. C,. shows the largest change; this reflects the low C., values for both the fiber and the
matrix. Almost universally. lower elastic stiffness. C, means higher dC/dT. In Figure 6. the
near equivalence of dC,,/dT and dC,,/dT reflects the approximate transverse isotropy of this
composite.

Interface Effects on Damping and Phase Vclocitics in an SiC-Particle Reinforced Aluminum

Equations (12) and (13) provide implicit relations for the complex wave numbers k,* and
k, if it is assumed that the inclusion is placed in a composite medium with the effective
unknown dynamic properties. Then k,2 and k2 , appearing on the right-hand sides of Eqs. (12)
and (13) will be replaced by k,2 and k2

2 respectively. These equations then can be solved
iteratively for the unknown k,* and k,*. These results are shown in Figures 7-10. Note that
Im(k*) measures damping and Re(k/k) measures the ratio of the phase velocities in the matrix
and the composite. In these calculations the interface layer properties were assumed to vary
linearly across the layer thickness from the properties of the particles to those of the matrix.
The elastic properties of the particles and the matrix were taken as: ,'+2/A' , 4.742x10" N/m
u' = 1.881x10 N/im p" = 3.181 g/cm. X+2, ,, 1.105x10 N/m 2. g = 0.267x10 N/tn2, " , 2.705
g/cm . Calculations were performed with or without interface layers and at two volume fractions:
c - 0.05. 0.15. The presence of the interface layer decreases the damping as well as the phase
velocities.

Dispersion in a Sandwich Platc with Low-Velocity Intcrfacc Layers

Using the numerical technique described in the theory section. we analyzed the dispersion
of elastic waves in the five-layer plate shown in Figure 3. The displacement is assumed to be

i
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u (xz,t) - f (z)eikx -c t (1S)

II all the layers are transversely isotropic with the symmetry axes parallel or perpendicular
to the direction of wave propagation (x-axis), then the equations governing the y-component of
the displacement, uv , uncouple from those governing the x and z components. The former
correspond to the Si1 motion and the latter to plane strain motion.

Figures 11 and 12 show the dispcrison curves for the plane-strain motion, and Figure 13
shows those for the SIt motion. In these figures the vertial axis corresponds to 2 =

wh, -rv - and the horizontal axis to " = kh/ir. Here h is the thickness of each of the two
.,i

low velocity layers and C2 = ,1/'a is the shear wave velocity in these layers. The properties

of the stiff layers are taken to be u = S.76xl09 N/m. p'= 1771 g/cm' , V'= (13. Those of the
soft layers are A = 1.77 x109 N/M 2

, = 1.2 g/cm3 . v = 0.3. h/lI is taken to be 0.1

Figure 11 shows the first nine modes for small values of f2 and " It is seen that these
dispersion curves look qualitatively very similar to those for an isot:opic plate However, the
important difference is that cut-off frequencies of higher modes are lowered signficantly. Figure
12 shows the first three modes over a wide range of frequency and wave number. It is found
that at short wavelnigths the phase velocity of the first two modes departs significantly from the
Rayletgh wave velocity . , the stiff layer. Dispersion curves for SH-motion (Figure 13) also show
similar features The departure depends on the ratios of the elastic properties and of the
thicknesses of the low-velocity layers and the laminae. This effect and the lowering of cutoff
frequencies should lead to ultrasonic characterization of interfaces.

A. CONCLUSIONS

We have shown that modeling and experimental observations of particle-reinforced and
fiber-reinforced materials lead to property characterization of the reinforcing phases. Also, we
have presented model calculations of interface effects on phase velocities and attenuation of waves
in a composite medium. It is shown that, for the particular systems considered, the presence of
low-velocity interface layers decreases the phase velocities as well as the attenuation.
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Table 1. Measured and calculated elastic constants for graphite-fiber-reinforced
composite and calculated 6raphite-fiber elastic constants. Except for dimension-
less v i, units are GPa.

32 Composite Fiber Composite Composite-
Fiber Measured Calculated Calculated Calc./Meas.

C 20.02 32.18 19.09 32.18 1.00i11

C22 20.02 32.03 19.09 32.14 1.00

C33 234.77 192.24 234.99 194.14 1.00
C44 24.00 21.66 19.94 21.66 1.00

C,, 24.00 21.51 19.94 21.66 1.01
D

C 5.02 9.31 5.60 9.31 1.00i C66

C12 9.98 13.55 7.89 13.56 1.00
C13 6.45 16.65 10.34 16.60 1.00

C23 6.45 16.65 10.34 16.60 1.00

El1 15.00 25.94 15.66 25.96 1.00

E22 15.00 25.81 15.66 25.96 1.01

E 232.00 180.09 227.07 100.09 1.00i E33

S12  0.494 0.396 0.399 0.394 0.99

V 13  0.014 0.052 0.026 0.052 1.00

V23  0.014 0.053 0.026 0.052 0.98

V 21  0.494 0.394 0.399 0.394 1.00

V 31  0.215 0.363 0.383 0.393 1.00

V 32  0.215 0.366 0.383 0.363 0.99

S. 3

I
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List of Figures

Figure 1. An oblate spheroidal inclusion with interface layer.

, Figure 2. A spherical inclusion with interface layer.

Figure 3. A layered plate with thin interface layers.

Figure 4. For cast-iron, Young's modulus versus graphite-particle aspect ratio. Symbols
represent measurements. Curves represent model-calculation results for two volume
fractions: 0.10 and 0.12. Upper, nearly horizontal, curves represent graphite's tipper
third-order-bound (Krner-bound) elastic constants. Lower curves represent
graphite's lower third-order bound.

Figure 5. Graphite-Al microstructure. Transverse section of parallel 7-um-diameter graphite
fibers distributed nearly homogeneously in aluminum matrix. The fiber volume
fraction equals 70 percent. The white network represents aluminum boundary
regions between fiber bundles used in manufacture.

Figure 6. For a composite consisting of 70-vol.-pct. uniaxial graphite fibers in an aluminum
matrix, the variation with temperature of the principal Cij elastic stiffnesses. Lines
at the right show the variation of the aluminum-matrix longitudinal and shear
moduli. C, and G.

Figure 7. Attenuation of a plane longitudinal wave in a particle-reinforced composite with and
without interface layers. c denotes volume function of inclusions.

Figure S. Attenuation of a plane shear wave in a particle-reinforced composite with and
without interface layers.

Figure 9. Phase velocity of a plane longitudinal wave in particle-reinforced composite with and
without interface layers.

Figure 10. Phase velocity of a plane shear wave in a particle-reinforced composite with and
without interface layers.

Figure 11. Dispersion of Lamb waves in a sandwich plate at low frequencies.

Figure 12. Dispersion of Lamb waves in a sandwich plate at finite frequencies.

Figure 13. Dispersion of SH1 waves in a sandwich plate.
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